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❑Vector “w” keeps the straight, but changes the scale.
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Definition

An eigenvector of a square 𝑛 × 𝑛 matrix 𝐴 is nonzero vector 𝑣 such that 𝐴𝑣 = 𝜆𝑣 for some 
scalar 𝜆. A scalar 𝜆 is called an eigenvalue of 𝐴 if there is a nontrivial solution 𝑣 of 𝐴𝑣 = 𝜆𝑣; 
such an 𝑣 is called an eigenvector corresponding to 𝜆.

Example
 

❑ 𝐴 = 3 −2
1 0

 , 𝑣 = 2
1

 , 𝜆 = 2

❑ Show that 7 is an eigenvalue of matrix B, and find the corresponding eigenvectors.

B = 1 6
5 2

❑  An eigenvector must be nonzero, by definition, but an eigenvalue may be zero.
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Note

𝜆 is an eigenvalue of an 𝑛 × 𝑛 matrix:
     𝐴𝑣 = 𝜆𝑣 ⇒ 𝐴 − 𝜆𝐼 𝑣 = 0   
The set of all solutions of above is just the null space of the matrix 𝐴 − 𝜆𝐼. So this 
set is the subspace of ℝ𝑛and is called the eigenspace of A corresponding to 𝜆 . 
The eigenspace consists of the zero vector and all the eigenvectors 
corresponding to 𝜆.
Eigenspace: A vector space formed by eigenvectors corresponding to the 
same eigenvalue and the origin point. 𝒔𝒑𝒂𝒏{𝒄𝒐𝒓𝒓𝒆𝒔𝒑𝒐𝒏𝒅𝒊𝒏𝒈 𝒆𝒊𝒈𝒆𝒏𝒗𝒆𝒄𝒕𝒐𝒓𝒔}
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Note

❑𝐴𝑣 =  𝜆𝑣 ⇒ 𝐴𝑣 − 𝜆𝑣𝐼 = 0 ⇒ 𝑨 − 𝝀𝑰 𝒗 = 𝟎 𝒗 ≠ 𝟎
o 𝒗 ∈ 𝑵 𝑨 − 𝝀𝑰
o 𝑨 − 𝝀𝑰 must be singular.
o Proof that for finding the eigenvalue we should solve the determinate zero equation. Look at nullspace, rank and 

nullity theorem, singular matrix, and det zero!

❑ Characteristic polynomial 𝐝𝐞𝐭(𝑨 − 𝝀𝐈)

❑ Characteristic equation 𝐝𝐞𝐭(𝑨 − 𝝀𝐈) = 0
❑ If λ is an eigenvalue of A, then the subspace 𝐸λ= {span{v} | Av = λv} is called the 

eigenspace of A associated with λ. (This subspace contains all the span of eigenvectors 
with eigenvalue λ, and also the zero vector.)

❑ Eigenvector is basis for eigenspace.
❑ Set of all eigenvalues of matrix is 𝜎 𝐴 𝑛𝑎𝑚𝑒𝑑 𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚 𝑜𝑓 𝑎 𝑚𝑎𝑡𝑟𝑖𝑥
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Let A be a 𝑚 × 𝑛 matrix:
𝑁𝑢𝑙𝑙𝑖𝑡𝑦(𝐴)  +  𝑅𝑎𝑛𝑘(𝐴)  =  𝑛

Theorem
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Note

❑Instead of det(𝐴 − 𝜆𝐼), we will compute 𝐝𝐞𝐭 𝝀𝐈 − 𝑨 . Why?
o det 𝐴 − 𝜆𝐼 = −1 ndet(𝜆𝐼 − A)
o Matrix 𝑛 × 𝑛 with real values has …… eigenvalues.
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Find eigenvalues and eigenvectors, eigenspace (E), and 𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚 of matrix 𝑨 =
𝟑 −𝟐
𝟏 𝟎

:

det(𝐴 − 𝜆I) = 3 − 𝜆 −2
1 −𝜆

 = 𝜆2- 3𝜆 + 2 = 0 ⇒ ቊ
𝜆1 = 1
𝜆2 = 2

ൠ
𝜆1 = 1

𝐴 − 𝜆1𝐼 𝑞1 = 0
 ⇒ 𝑞1 =

1
1

 ⇒ 3 −2
1 0

1
1

 = 1 1
1

ൠ
𝜆2 = 2

𝐴 − 𝜆2𝐼 𝑞2 = 0
 ⇒ 𝑞2 =

2
1

 ⇒ 3 −2
1 0

2
1

 = 2 2
1

Eigenvalues={1,2}

Eigenvectors={ 1
1

,
2
1

}

𝐸1 𝐴 = 𝑠𝑝𝑎𝑛{
1
1

} 𝐸2 𝐴 = 𝑠𝑝𝑎𝑛{
2
1

}

𝜎 𝐴 ={1,2}

𝑨𝑸 = 𝑸𝜦 ⇒
𝟑 −𝟐
𝟏 𝟎

𝟏 𝟐
𝟏 𝟏

 = 𝟏 𝟐
𝟏 𝟏

𝟏 𝟎
𝟎 𝟐
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 Are eigenvectors unique?
▪ If v is an eigenvector, then 𝛽v is also an eigenvector

𝐴 𝛽𝑣 = 𝛽 𝐴𝑣 = 𝛽 𝜆𝑣 = 𝜆 𝛽𝑣
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 If A is an n × n matrix:
▪ The sum of the n eigenvalues of A is the trace of A.
▪ The product of the n eigenvalues is the determinant of A.
▪  0 ∈𝜎(𝐴)  ⇔ |𝐴|=0
▪ If 𝐴 is symmetric, then any two eigenvectors from different eigenspace 

are orthogonal.

▪ If 𝐴 is symmetric, it has exactly n (not necessarily distinct) real 
eigenvalues.

ቑ

𝐴𝑣1 = 𝜆1𝑣1

𝐴𝑣2 = 𝜆2𝑣2

𝜆1 ≠ 𝜆2

⇒  𝑣1
𝑇𝑣2 = 0



Covariance Matrix

02



 Measures how much two variables change together.
 Look at how much is the distance of each point from 

the x-direction mean & y-direction mean.
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x-direction mean y-direction mean
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 Dataset with spread 
only in one 
dimension will have 
a low covariance
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 Covariance of a dimension with itself.



 Any covariance matrix is symmetric and positive semi-definite 
and its main diagonal contains variances.
▪ covariance is a symmetric function, i.e. Cov(X,Y)=Cov(Y,X) 
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 .

Maryam Ramezani Social and Economic Networks 22



Physical interpretation
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 The value λ is an eigenvalue of matrix A if there exists 
a non-zero vector x, such that Ax=λx. Vector x is an 
eigenvector of matrix A
▪ The largest eigenvalue is called the principal eigenvalue
▪ The corresponding eigenvector is the principal eigenvector
▪ Corresponds to the direction of maximum change

Maryam Ramezani Social and Economic Networks 25



Principal Components
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How PCA can take 4 or more 
gene measurements and make a 

2-D PCA Plot?

PCA might tell us that Gene 3 is 
responsible for separating samples 

along the x-axis.
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 min(distances of points from line) = max(distances of projected points to the origin) 
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 Consider one data point.
 The distance from the point to the origin doesn’t change when the red dotted line rotates.
 Project the point onto the line 
 It is usually easier to calculate “c”.
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 PCA finds the best fitting line by maximizing the sum of 
the squared distances from the projected points to the 
origin.
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 Why? 

 PCA is the eigen decomposition of covariance matrix.
 PCA is the SVD decomposition of matrix.
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 .

 Eigen vector of covariance matrix
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 .

 SVD of X
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Any Question?
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