

Eigenvalue and Eigenvectors, Covariance Matrix, & PCA

CE642: Social and Economic Networks
Maryam Ramezani
Sharif University of Technology
maryam.ramezani@sharif.edu

01

Linear Algebra Review Eigenvalue & Eigenvector

Motivation

Vector "w" keeps the straight, but changes the scale.

Definition

Definition

An **eigenvector** of a square $n \times n$ matrix A is nonzero vector v such that $Av = \lambda v$ for some scalar λ . A scalar λ is called an **eigenvalue** of A if there is a nontrivial solution v of $Av = \lambda v$; such an v is called an *eigenvector corresponding to* λ .

□ An eigenvector must be nonzero, by definition, but an eigenvalue may be zero.

Example

$$\Box A = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix}, v = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \lambda = 2$$

☐ Show that 7 is an eigenvalue of matrix B, and find the corresponding eigenvectors.

$$\mathsf{B} = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$$

Eigenspace

Note

 λ is an eigenvalue of an $n \times n$ matrix:

$$Av = \lambda v \Rightarrow (A - \lambda I)v = 0$$

The set of all solutions of above is just the null space of the matrix $A - \lambda I$. So this set is the *subspace* of \mathbb{R}^n and is called the **eigenspace** of A corresponding to λ . The eigenspace consists of the zero vector and all the eigenvectors corresponding to λ .

Eigenspace: A vector space formed by eigenvectors corresponding to the same eigenvalue and the origin point. $span\{corresponding\ eigenvectors\}$

Definitions

Theorem

Let A be a $m \times n$ matrix:

Nullity(A) + Rank(A) = n

Note

- $\Box Av = \lambda v \Rightarrow Av \lambda vI = 0 \Rightarrow (A \lambda I)v = 0 \quad v \neq 0$
 - $\circ v \in N(A \lambda I)$
 - \circ $A \lambda I$ must be singular.
 - o Proof that for finding the eigenvalue we should solve the determinate zero equation. Look at nullspace, rank and nullity theorem, singular matrix, and det zero!
- \Box Characteristic polynomial $\det(A \lambda I)$
- \Box Characteristic equation $det(A \lambda I) = 0$
- If λ is an eigenvalue of A, then the subspace $E_{\lambda} = \{\text{span}\{v\} \mid \text{Av} = \lambda v\}$ is called the eigenspace of A associated with λ . (This subspace contains all the span of eigenvectors with eigenvalue λ , and also the zero vector.)
- ☐ Eigenvector is basis for eigenspace.
- \square Set of all eigenvalues of matrix is $\sigma(A)$ named spectrum of a matrix

Definitions

Note

- \square Instead of $\det(A \lambda I)$, we will compute $\det(\lambda I A)$. Why?
 - $\circ \det(A \lambda I) = (-1)^{n} \det(\lambda I A)$
 - o Matrix $n \times n$ with real values has eigenvalues.

Finding Eigenvalues and Eigenvectors

Let A be an $n \times n$ matrix.

- 1. First, find the eigenvalues λ of A by solving the equation $\det{(\lambda I A)} = 0$.
- 2. For each λ , find the basic eigenvectors $X \neq 0$ by finding the basic solutions to $(\lambda I A) X = 0$.

To verify your work, make sure that $AX = \lambda X$ for each λ and associated eigenvector X.

Example

Find eigenvalues and eigenvectors, eigenspace (E), and spectrum of matrix $A = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix}$:

$$\det(A - \lambda I) = \begin{vmatrix} 3 - \lambda & -2 \\ 1 & -\lambda \end{vmatrix} = \lambda^2 - 3\lambda + 2 = 0 \Rightarrow \begin{cases} \lambda_1 = 1 \\ \lambda_2 = 2 \end{cases}$$
$$(A - \lambda_1 I) q_1 = 0 \Rightarrow \begin{cases} A_1 = 1 \\ 1 & 0 \end{cases} \Rightarrow \begin{cases} A_1 = 1 \\ 1 & 0 \end{cases} \Rightarrow \begin{bmatrix} 1 \\ 1 & 0 \end{cases} = 1 \begin{bmatrix} 1 \\ 1 & 0 \end{cases}$$

$$\frac{\lambda_2 = 2}{(A - \lambda_2 I)q_2 = 0} \Rightarrow q_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = 2 \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

Eigenvalues={1,2}

Eigenvectors=
$$\{\begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 2\\1 \end{bmatrix}\}$$

$$E_1(A) = span\{\begin{bmatrix} 1\\1 \end{bmatrix}\} E_2(A) = span\{\begin{bmatrix} 2\\1 \end{bmatrix}\}$$

$$\sigma(A) = \{1,2\}$$

$$AQ = Q\Lambda \Rightarrow \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$

Eigenvalues Properties

- Are eigenvectors unique?
 - If v is an eigenvector, then β v is also an eigenvector $A(\beta v) = \beta(Av) = \beta(\lambda v) = \lambda(\beta v)$

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

 For a 2 × 2 matrix, this is a simple quadratic equation with two solutions (maybe complex)

$$\lambda = (a_{11} + a_{22}) \pm \sqrt{\frac{(a_{11} + a_{22})^2}{4(a_{11}a_{22} - a_{12}a_{21})}}$$

Eigenvalues Properties

- If A is an n × n matrix:
 - The sum of the n eigenvalues of A is the trace of A.
 - The product of the n eigenvalues is the determinant of A.
 - $0 \in \sigma(A) \Leftrightarrow |A| = 0$
 - If A is symmetric, then any two eigenvectors from different eigenspace are orthogonal.

$$Av_1 = \lambda_1 v_1
Av_2 = \lambda_2 v_2
\lambda_1 \neq \lambda_2$$

$$\Rightarrow v_1^T v_2 = 0$$

If A is symmetric, it has exactly n (not necessarily distinct) real eigenvalues.

02

Covariance Matrix

- Measures how much two variables change together.
- Look at how much is the distance of each point from the x-direction mean & y-direction mean.

Covariance Matrix
$$Cov(x,y) = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{n}$$

Negative Covariance

Low Covariance

 Dataset with spread only in one dimension will have a low covariance

Covariance Conclusion

Large Negative Covariance

Near Zero Covariance

Large Positive Covariance

Variance

Covariance of a dimension with itself.

- Any covariance matrix is symmetric and positive semi-definite and its main diagonal contains variances.
 - covariance is a symmetric function, i.e. Cov(X,Y)=Cov(Y,X)

Covariance Matrix for Graph

$$C = rac{1}{n} (X_{ ext{centered}})^ op (X_{ ext{centered}})$$

1. Data Matrix X: Let X = A.

$$X = egin{bmatrix} 0 & 1 & 1 & 0 \ 1 & 0 & 1 & 1 \ 1 & 1 & 0 & 0 \ 0 & 1 & 0 & 0 \end{bmatrix}.$$

- 2. **Optionally, mean-center** each column. (Calculate the mean of each column and subtract it from each entry in that column.)
- 3. Covariance Matrix:

$$C = rac{1}{4} \; X_{ ext{centered}}^ op \; X_{ ext{centered}}.$$

03

Physical interpretation

Physical interpretation

Consider a covariance matrix, A, i.e., A = 1/n S^TS for some S

A =
$$\begin{bmatrix} 1 & .75 \\ .75 & 1 \end{bmatrix}$$
 $\Rightarrow \lambda_1 = 1.75, \lambda_2 = 0.25$

 Error ellipse with the major axis as the larger eigenvalue and the minor axis as the smaller eigenvalue

Eigenvalues and Eigenvectors

- The value λ is an eigenvalue of matrix A if there exists a non-zero vector x, such that $Ax=\lambda x$. Vector x is an eigenvector of matrix A
 - The largest eigenvalue is called the principal eigenvalue
 - The corresponding eigenvector is the principal eigenvector
 - Corresponds to the direction of maximum change

04

Principal Components

	Mouse	Mouse	Mouse	Mouse	Mouse	Mouse
	1	2	3	4	5	6
Gene 1	10	11	8	3	1	2

Even though it's a simple graph, it shows us that mice 1, 2 and 3 are more similar to each other than they are to mice 4, 5 6.

	Mouse 1	Mouse 2	Mouse 3	Mouse 4	Mouse 5	Mouse 6
Gene 1	10	11	8	3	1	2
Gene 2	6	4	5	3	2.8	1

	Mouse 1	Mouse 2	Mouse 3	Mouse 4	Mouse 5	Mouse 6
Gene 1		11	8	3	2	1
Gene 2	6	4	5	3	2.8	1
Gene 3		9	10	2.5	1.3	2
Gene 4	5	7	6	2	4	7

If we measured 4 genes, however, we can no longer plot the data - 4 genes require 4 dimensions.

PCA might tell us that Gene 3 is responsible for separating samples along the x-axis.

How PCA can take 4 or more gene measurements and make a 2-D PCA Plot?

PC 1 (91%)

	Mouse 1	Mouse 2	Mouse 3	Mouse 4	Muse 5	Mouse 6
Gene 1		11	8	3	2	1
Gene 2	6	4	5	3	2.8	1

From this point on, we'll focus on what happens in the graph; we no longer need the original data...

How PCA Decides the Best Line?

How PCA Decides the Best Line?

How PCA Decides the Best Line?

Maryam Ramezani

Let's Think

min(distances of points from line) = max(distances of projected points to the origin)

Let's Think

- Consider one data point.
- The distance from the point to the origin doesn't change when the red dotted line rotates.
- Project the point onto the line
- It is usually easier to calculate "c".

39

PCA finds the best fitting line by maximizing the sum of the squared distances from the projected points to the origin.

Maryam Ramezani 40

 $d_{1}^{2} + d_{2}^{2} + d_{3}^{2} + d_{4}^{2} + d_{5}^{2} + d_{6}^{2}$ = sum of squared distances = SS(distances)

To make PC1

Mix 4 parts Gene 1 with 1 part Gene 2

The ratio of Gene 1 to Gene 2 tells you that Gene 1 is more important when it comes to describing how the data are spread out..

a "linear combination" of Genes 1 and 2.

Maryam Ramezam Social and Economic Networks

44

 $d_{1}^{2} + d_{2}^{2} + d_{3}^{2} + d_{4}^{2} + d_{5}^{2} + d_{6}^{2} = \text{sum of squared distances} = SS(distances)$

Conclusion

Why?

$$Eigen-decomposition(C) \longleftrightarrow \underbrace{SVD(X_{ ext{centered}})}_{X_{ ext{centered}} = U \ \Sigma \ V^ op}$$

- PCA is the eigen decomposition of covariance matrix.
- PCA is the SVD decomposition of matrix.
 - PCA on $C = X^{\top}X$:
 - ullet Eigenvalues of C o variances in principal directions.
 - ullet Eigenvectors of C o principal axes (PCs).
 - SVD on X:
 - ullet Right singular vectors of X o same directions as eigenvectors of C.
 - Singular values are $\sqrt{\text{eigenvalues of } C}$.

Example

$$X = egin{bmatrix} 0 & 1 & 1 & 0 \ 1 & 0 & 1 & 1 \ 1 & 1 & 0 & 0 \ 0 & 1 & 0 & 0 \end{bmatrix}$$

Eigen vector of covariance matrix

Covariance Matrix
$$\ C = egin{bmatrix} 2 & 1 & 1 & 1 \ 1 & 3 & 1 & 0 \ 1 & 1 & 2 & 1 \ 1 & 0 & 1 & 1 \end{bmatrix}.$$

PCA on C means we look for eigen-decomposition:

$$C \mathbf{v} = \lambda \mathbf{v}$$
.

50

- ullet The eigenvalues λ indicate the variance captured.
- ullet The eigenvectors ${f v}$ are the principal components.

Approximate Largest Eigenvalue & Eigenvector

- Largest eigenvalue $\lambda_{
 m max} pprox 4.70$.
- Corresponding eigenvector $\mathbf{v}_{\mathrm{max}} pprox (0.529,~0.597,~0.529,~0.291)$.

This eigenvector is **PC1** (the first principal component) of C.

Example

$$X = egin{bmatrix} 0 & 1 & 1 & 0 \ 1 & 0 & 1 & 1 \ 1 & 1 & 0 & 0 \ 0 & 1 & 0 & 0 \end{bmatrix}$$

Performing Singular Value Decomposition (SVD) on the same matrix X:

$$X = U \, \Sigma \, V^{ op},$$

where

- U is 4×4 ,
- ullet Σ is 4 imes 4 diagonal (singular values),
- V is 4×4 .

SVD of X

From our eigen-decomposition of C, the largest eigenvalue was pprox 4.70. Its square root is $\sqrt{4.70} pprox 2.17$. In the SVD of X:

- The largest singular value $\sigma_{\rm max}$ is about 2.17.
- The corresponding right singular vector is $\mathbf{v}_{\mathrm{max}} pprox (0.529,\ 0.597,\ 0.529,\ 0.291)$.

This is exactly the same vector (up to a possible sign) as the principal component from the eigendecomposition of ${\cal C}$.

