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Vector “w” keeps the straight, but changes the scale.



Definition

Definition

An eigenvector of a square n X n matrix A is nonzero vector v such that Av = Av for some
scalar A. A scalar A is called an eigenvalue of A if there is a nontrivial solution v of Av = Av;

such an v is called an eigenvector corresponding to A.

An eigenvector must be nonzero, by definition, but an eigenvalue may be zero.

Example
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O Show that 7 is an eigenvalue of matrix B, and find the corresponding eigenvectors.
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Eigenspace

Ais an eigenvalue of an n X n matrix:

Av=Av=>A—-ADv =0
The set of all solutions of above is just the null space of the matrix A — Al. So this
set is the subspace of R*and is called the eigenspace of A corresponding to 4.
The eigenspace consists of the zero vector and all the eigenvectors
corresponding to A.
Eigenspace: A vector space formed by eigenvectors corresponiding to the

same eigenvalue and the origin point. span{corresponding eig¢iivertors}

forh=7




Theorem

Definitions Let A be a m X n matrix:

Nullity(A) + Rank(A) = n

HAv = Ww=24Av—-Wwl=0=>A—-ADHv=0v+#0
o PVENA-AD

o A — AI must be singular.

o Proof that for finding the eigenvalue we should solve the determinate zero equation. Look at nullspace, rank and
nullity theorem, singular matrix, and det zero!

O Characteristic polynomial det(4 — Al)

d Characteristic equation det(A—AI) =0

d If Ais an eigenvalue of A, then the subspace Ej = {span{v} | Av = Av} is called the
eigenspace of A associated with A. (This subspace contains all the span of eigenvectors
with eigenvalue A, and also the zero vector.)

 Eigenvector is basis for eigenspace.

Q Set of all eigenvalues of matrix is a(4) named spectrum of a matrix



Definitions

Qinstead of det(4 — AI), we will compute det(Al — 4). Why?
o det(A—AI) = (—1)"det(Al — A)
o Matrix n X n with real values has ..... eigenvalues.



Finding Eigenvalues and Eigenvectors

Let A be an n X n matrix.

1. First, find the eigenvalues A of A by solving the equation det (Al — A) = 0.
2. For each A, find the basic eigenvectors X # 0 by finding the basic solutions to (Al — A) X = 0.

To verify your work, make sure that AX = AX for each A and associated eigenvector X.



Find eigenvalues and eigenvectors, eigenspace (E), and spectrum of matrix 4 = ﬁ
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Eigenvalues Properties

Are eigenvectors unigue?
If vis an eigenvector, then Bv is also an eigenvector

A(Bv) = B(Av) = B(Av) = A(Bv)

{au a12:|
dy dy

= For a 2 x 2 matrix, this is a simple quadratic equation with two
solutions (maybe complex)

A= )+ a
(all t 02__) \/4(6;116!32 - 0135’21)




Eigenvalues Properties

If Ais an n x n matrix:
The sum of the n eigenvalues of A is the trace of A.
The product of the n eigenvalues is the determinant of A.
0 ec(4) < |A|=0
If A is symmetric, then any two eigenvectors from different eigenspace
are orthogonal.

Av1 — /11171
AUZ = /12172 = vlTvz =0
AMFA

If A is symmetric, it has exactly n (not necessarily distinct) real
eigenvalues.
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Covariance Matrix
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Covariance Matrix

Measures how much two variables change together.
Look at how much is the distance of each point from
the x-direction mean & mean.

x-direction mean



Covariance Matrix




Covariance Matrix







Negative Covariance




Low Covariance

Dataset with spread
only in one
dimension will have
a low covariance




Covariance Conclusion

Large Negative Near Zero Large Positive
Covariance Covariance Covariance



Variance

Covariance of a dimension with itself.

Cov(x, x)

>i (@i — p)”
N

var|{x)




Covariance Matrix

Any covariance matrix is symmetric and positive semi-definite
and its main diagonal contains variances.

covariance is a symmetric function, i.e. Cov(X,Y)=Cov(Y,X)

Var (x,x) Cov(x,y) Cov(x z)

Z: Cov (yx) Var(yy) Covl(yz)
Cov(zx) Cov(zy) Var(z2)




Covariance Matrix for Graph

1

C = T(chntcrcd) | (chntcrcd)

1. Data Matrix X:let X = A.

01 10
10 1 1
X=11 10 o
010 0

2. Optionally, mean-center each column. (Calculate the mean of each column and subtract it from

each entry in that column.)

3. Covariance Matrix:

1

C = 4 Xcentcrcd XCCD’ECI‘Cd'
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Physical interpretation

%



Physical interpretation

= Consider a covariance matrix, A, i.e., A=1/nS'S for
some S

1 .75 ﬂ
A= =1 =1.75,1,=025
75 1 :

= Error ellipse with the major axis as the larger eigenvalue
and the minor axis as the smaller eigenvalue



Eigenvalues and Eigenvectors

The value A is an eigenvalue of matrix A if there exists
a Non-zero vector x, such that Ax=Ax. Vector x is an
eigenvector of matrix A

The largest eigenvalue is called the principal eigenvalue
The corresponding eigenvector is the principal eigenvector
Corresponds to the direction of maximum change
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Principal Components
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Introduction

éMouse Mouse MouseéMouse MouseéMouse
o 2 3 4 5§ | 6

Even though it’s a simple

10 11 8 3 1 2 graph, it shows us that mice 1,
2 and 3 are more similar to
each other than they are to
mice 4, 5 6.

Gene 1

|. -
Low Values

Gene 1 High Values



Introduction

‘Mouse Mouse Mouse Mouse Mouse Mouse

1 2 3 4 5 6
Gene1 10 11 8 3 1 2
Gene2 6 4 5 @ 3 @ 28 | 1

Gene 2

...then we can plot the data on
a 2-Dimensional x/y graph.

Gene 1



Introduction

‘Mouse Mouse Mouse Mouse Mouse Mouse

1 2 3 4 5 6
Gene 1| 10 11 8 3 2 -
If we measured 4 genes,
Gene?2 6 4 5 3 o8 1 however, we can no longer

plot the data - 4 genes require
4 dimensions.




Introduction

PCA might tell us that Gene 3 is
responsible for separating samples
along the x-axis.

PC 2 ©
(4%) (6

How PCA can take 4 or more

gene measurements and make a
2-D PCA Plot?

PC 1 (91%)



What PCA Does

Mouse Mousé Mouse Mouse se Mouse
1 2 3 4 5 6
10 8 e 1

il

3

Gene 1

Gene 2 6

From this point on, we’ll focus on
what happens in the graph; we no
longer need the original data...

Gene 2

X—> X

Gene 1



What PCA Does

NOTE: Shifting the data did not
change how the data points are
positioned relative to each
other.

Now that the data are
centered on the origin, we
can try to fit a line to it.

Gene 1

Gene 2
Now we’ll shift the data so
that the center is on top of
the origin (0,0) in the graph.




What PCA Does

Gene 2

...we start by drawing a
random line that goes

through the origin... \

Gene 1




What PCA Does

...then we rotate the line until

it fits the data as well is it

can, given that it has to go
through the origin.

Gene 2

Gene 2
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Ultimately, this line fits
best...
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How PCA Decides the Best Line?

Gene 2

To quantify how good this
line fits the data, PCA
projects the data onto it...

----- > Gene 1



How PCA Decides the Best Line?

Gene 2
T ... and then it can either
measure the distances from the
data to the line and try to find
the line that minimizes those
distances...

Gene 1




How PCA Decides the Best Line?

Gene 2

...or it can try to find the
line that maximizes the
distances from the
projected points to the
origin.

Gene 1




Let’s Think

min(distances of points from line) = max(distances of projected points to the origin)

Gene 2
Gene 2 T
: ...while these distances
...while these distances get larger when the line s
get larger when the line ,\' fits better. — _#-
fits better. —_— ' > /2 T1%%
X 4+
:* " ...... 0“‘ ..‘.
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Let’s Think

Consider one data point.

The distance from the point to the origin doesnt change when the red dotted line rotates.
Project the point onto the line

It is usually easier to calculate “c”.

...then we can use the
Pythagorean theorem to show
how b and ¢ are inversely
related.

az=>b2+c?

Gene 2

That means that if we label the
sides like this...
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Gene 1

If b gets bigger...

a {p2) c2

Gene 2

Gene 1



PCA

PCA finds the best fitting line by maximizing the sum of
the squared distances from the projected points to the

origin. d2+d2+ 02+ 02+ 02 +d2  Gene 2

...and then PCA measures the
distance from this point to the
origin...

ds ¢

AN .
\ [ ::_.= Gene 1




PC1

d12 + d2?2 + d32 + ds? + ds2 + de? = sum of squared distances = SS(distances)

Ultimately, we end up with
this line. It has the largest
SS(distances).

L)

®

""
at®

a8®

This line is called Principal
Component 1. (PC1 for short.)

PC1 has a slope of 0.25

...we go up 1 unit
along the Gene 2
axis.

** ........




Gene 2
T To make PC1
Mix 4 parts Gene 1

That means that the data are with 1 part Gene 2

mostly spread out along the

Gene 1 axis... The ratio of Gene 1 to Gene
2 tells you that Gene 1 is
more important when it
comes to describing how the
data are spread out..

...and only a little bit
spread out along the

Gene 2 axis. \

i a “linear combination” of
Gene 1 Genes 1 and 2.




Gene 2

Gene 2
- The new values change our
recipe...
The recipe for PC1, going " ;09'7“3"‘; Pg1 1
over 4 and up 1, gets us IXRL.I1 parts .aene
. P : 9 with 0.242 parts Gene 2
to this point...
...but the ratio is the same: we still 412 _ 1
use 4 times as much Gene 1 as 4.12 1
Ge.ne 2. YEVIS 0.242 |
4 Gene 1
—_— = 0.97
4 Gene 1




Gene 2

Terminology Alert!!! This 1 unit
long vector, consisting of 0.97
parts Gene 1 and 0.242 parts
Gene 2, is called the “Singular
Vector” or the “Eigenvector”

for PC1.
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di2 + d22 + d32 + d4? + d52 + de2 = sum of squared distances = SS(distances)

SS(distances for PC1) _ Eigenvalue for PC1 ...and the square root of the
. n SS(distances) is called the
\J SS(distances for PC1) = Singular Value for PC1 Singular Value for PC1.
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Because this is only a 2-D
graph, PC2 is simply the line
through the origin that is

Gene 2

perpendicular to PC1, without \)
any further optimization that has

to be done.
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PC2

Gene 2

...and this means that the
recipe for PC2 is...

-1 Parts Gene 1

4 Parts Gene 2 \

g3

et
et
‘l
---
a®
st
a
a8

at®
o
at®
lll
°
"
a®




Conclusion
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C }:rem re.»necl‘)f‘"-f'fl‘-'f’l"'f’d }:remered UXV

Whg’p Figen—decompositioll(C) s ?VD(chutcred)_

PCA is the eigen decomposition of covariance matrix.
PCA is the SVD decomposition of matrix.

e PCAon(C = X'X:
e Eigenvalues of C' — variances in principal directions.
* Eigenvectors of C' — principal axes (PCs).

e SVDon X:

* Right singular vectors of X — same directions as eigenvectors of C.

e Singular values are y/eigenvalues of C.
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Eigen vector of covariance matrix

2 1 1 1
Covariance Matrix C = 1 i’ ; (13
1 0 1 1)
PCA on C' means we look for eigen-decomposition:
Cv = Av.

* The eigenvalues A indicate the variance captured.

® The eigenvectors Vv are the principal components.

Approximate Largest Eigenvalue & Eigenvector

* Largest eigenvalue A\, ~ 4.70.

* Corresponding eigenvector V. ~ (0.529, 0.597, 0.529, 0.291).

This eigenvector is PC1 (the first principal component) of C.



o = = O

SVD of X

—_ = O

o O = =

g_] Performing Singular Value Decomposition (SVD) on the same matrix X:
0 X=UzV',
U_ where

e Uis4d x 4,

e 3 is4 x 4 diagonal (singular values),

e Visd x 4.

From our eigen-decomposition of U, the largest eigenvalue was ~= 4.70. Its square root is v/4.70 ~
2.17. In the SVD of X:

* The largest singular value oy, is about 2.17.

* The corresponding right singular vector is v =~ (0.529, 0.597, 0.529, 0.291).

This is exactly the same vector (up to a possible sign) as the principal component from the eigen-

decomposition of C'.



Any Question?
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Social and Economic Networks

Maryam Ramezani
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